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ABSTRACT 
The Global Positioning System (GPS) is a satellite constellation which gives 

users access to position, navigation and timing services. Many industries not 

only benefit from this but are reliant on it. Although illegal, GPS jamming 
devices have the power to cause major disruption to many services including 

financial, power distribution and communication systems. Recent testing 

assesses Global Navigation Satellite System (GNSS) jammers as being very 
dangerous to aircraft and Unmanned Aerial Vehicles (UAVs) especially those 

flying at low height. GNSS is also critical to the safe operation of Connected 

and Autonomous Vehicles (CAV) such as driverless cars. Timely detection 

of an attack is deemed to be enough to ensure the safety of the vehicle. 
Detection and classification of GNSS jamming signals is necessary to enable 

this. This paper considers feature extraction using a Convolutional Neural 

Network (CNN) when representing the signal as a graphical image. The 
JamDetect dataset is produced containing 6 different types of commercial 

jamming signals. Features are extracted using a CNN before a machine 

learning classifier is trained for classification. Results show that representing 
the signal in the graphical form of Power Spectral Density (PSD) is the least 

susceptible to noise. CNN feature extraction with machine learning classifier 

Logistic Regression using PSD produces 82.7% (+/-0.7%) at  -20dB SNR and 

100% accuracy at -10dB SNR. The results using PSD graphical signal 
representation are significant for when it is necessary to detect and classify 

GPS jamming signals in low SNR environments. 

 



 2 

Keyword:  Convolutional Neural Network; Deep Learning; GNSS Jamming; 
Machine Learning; Classification; RF Signal Analysis; Transfer Learning; 

Feature Extraction; JamDetect.    

 

 

1. INTRODUCTION 

For many sectors, the Global Navigation Satellite System (GNSS) provides 

vital position, navigation and timing services but are extremely vulnerable to 
interference due to the signals being weak at the receiver. Space 

(communications) in the UK are deemed critical to national security and 

therefore classed as Critical National Infrastructure (Centre for the Protection 
of National Infrastructure 2021). In 2017 the potential economic impact from 

a loss of services for 5 days was assessed at £5.2bn (London Economics 

2017). Although this study has not been repeated it can assume the figure is 

much higher today. In 2021 society is highly dependent on GNSS for 
applications from power distribution, emergency services, travel and even 5G 

performance for a precise timing signals (Colard 2020). A further concern is 

the cascading effect on secondary and tertiary sectors from GNSS disruption 
(Pescaroli et al. 2019). Intentional interference known as jamming occurs 

when a jamming signal is transmitted at high power in a GNSS band, 

disrupting the GNSS service. Jamming equipment is illegal in many 
countries. In the UK the use of a jamming device is an offence under the 

Wireless Telegraphy Act but it is not illegal to buy or own the equipment 

(Ofcom 2021). Their availability on the open market from as little as £10.99 

(Amazon n.d.) combined with an increase in the use of drones causing public 
annoyance, has created fears of a stark increase in usage, making them a 

serious and credible threat to satellite navigation. An increased use of UAVs 

by law enforcement, hobbyists and commercial, has uncovered a potential 
motivation for civilians to purchase jamming devices to illegally combat their 

use. Morong et al. (Morong, Puričer, and Kovář 2019) carry out a study of 

GNSS jamming in a real world environment. They assess that GNSS jammers 

are very dangerous to aircraft and UAVs, especially those that are flying at 
low height. The IET recently did a study to look at how easy it would be to 

purchase a Drone Jammer Gun from Asia revealing a straightforward practise 

(Heubl 2021).  
 

However, a high powered jamming gun is not required to create a significant 

and critical effect. Today, with low cost Software Defined Radios (SDR) on 
the market it is possible to re-produce many different jamming signals, 

Lineswala and Shah show this in (Lineswala and Shah 2018) for jamming the 

Indian Regional Navigation Satellite System. Ferreira et al. (Ferreira et al. 
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2020) show the use of GNURadio software to produce jamming signals which 
are then transmitted on a BladeRF SDR to jam GPS signals for the disruption 

of UAV operation. Glomsvoll and Bonenberg (Glomsvoll and Bonenberg 

2017) showed maritime GPS receivers to be affected by even low power 

jamming signals from 1600 metres away. Positional accuracy was affected 
from under 1000m and showing up to 10m discrepancy in position. A real 

world example of the detrimental effect of a low cost GNSS jammer was 

shown when a truck driver used a device to obscure his movements from his 
employer. As part of his daily route he passed Newark International Airport 

and caused disruption to the Air Traffic Control System. It took 3 months to 

identify the issue with the system (Borio et al. 2016). The potential harm 
which could result from the use of a low cost jamming device becomes more 

critical when future reliance of Connected and Autonomous Vehicles (CAV) 

such as driverless cars on GNSS is considered. Pham and Xiong (Pham and 

Xiong 2020) present a survey of 184 papers considering state of the art attacks 
on CAVs. With regards to GNSS jamming they determine that the timely 

detection of a jamming incident in enough to ensure CAV safety and can be 

a pre-cursor to filtering out the attack signal so that the CAV can continue its 
operation in certain circumstances.  

 

 

BACKGROUND  

Jamming types have been classified into various categories in previous 

studies. A graphical representation of this can be seen in Fig.1 below. 

 

 
Figure 1.Graphical Representation of Jamming Signal Types.  
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Kraus et al. (Kraus, Bauemfeind, and Eissfeller 2011) define four classes to 
include continuous wave jamming and three variations of chirp jamming 

signals. Ferre et al. (Ferre, Fuente, and Lohan 2019) increase these definitions 

to 5 classes; Amplitude Modulated, Chirp jammers; Frequency modulated; 

Pulse or Distance Measurement Equipment (DME) jammers and Narrowband 
(NB) jammers. Other studies are less discriminative, Glomsvoll and 

Bonenberg (Glomsvoll and Bonenberg 2017) consider narrow and wideband 

jamming signals on high end receivers for  GPS L1 and GLONASS L1 
frequency bands. Their work concluded that the impact to GPS from jamming 

was more critical than jamming GLONASS. Lee et al. (Lee, Kim, and Won 

2018) consider a cloud based solution for the detection of GNSS jamming but 
rely on multiple receivers in the area of the jammer. They prove the detection 

of jammer type and estimate localisation based on the 2 dimensional time-

frequency correlation between receivers. Kim et al. (Kim, Jin, and Won 2020) 

again show the validity of considering the jamming signal as a 2 dimensional 
correlation in the time-frequency domain for detection of jamming type and 

estimated localisation. As in (Lee, Kim, and Won 2018) this solution is based 

on generating a network of receivers. Xu et al. (Xu et al. 2020) propose the 
use of a Deep Neural Network (DNN) with time, frequency and transform 

domain features from the signal for jamming recognition. The DNN was able 

to detect 12 jammer types with over 99% accuracy and outperformed 
traditional machine learning classifiers. Lineswala and Shah (Lineswala and 

Shah 2019) use power spectral density to represent the signals but only 

consider jamming detection and not classification. Wu et al. (Wu et al. 2018) 

classify jamming signals for space communication links by extracting 
features through a CNN. In particular they consider the combination of 

jamming signals and various levels of jamming signal to noise ratios showing 

features to be robust. Ferre et al. (Ferre, Fuente, and Lohan 2019) use 
spectrograms and treat jamming classification as an image classification 

problem. They achieve 94.90% accuracy using Support Vector Machine and 

91.36% using CNN. By utilising transfer learning with a pre-trained CNN on 

ImageNet, Swinney and Woods (Swinney and Woods 2019) are able to 
increase this accuracy to 98% by feeding the CNN various representations of 

the signal at once. This work does not consider specifically altering the SNR 

to set levels to observe the effect. However, signals are normally corrupted 
by the jamming signal and Additive White Gaussian Noise (AWGN) due to 

background noise over wireless communication links (Wu et al. 2018). 

Although a large increase in AWGN will interfere with the reception of GNSS 
signals itself, it is important to know if a jamming signal is present in these 

situations for reasons of timely attribution and intelligence. In other fields, 

Swinney and Woods show the effectiveness of the deep learning technique 

presented in this paper utilising transfer learning with a pre-trained CNN 
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when considering the detection and classification of UAV signals in (Swinney 
and Woods 2021a)(Swinney and Woods 2020)(Swinney and Woods 

2021b)(Swinney 2021). 

 

Evaluating signals in low SNR environments is significant for organisations 
who require to know whether an adversary is attempting a jamming attack for 

reasons of timely attribution and enabling an intelligence picture of attacks. 

Therefore in this paper previous work by Swinney and Woods (Swinney and 
Woods 2019) is extended by producing the JamDetect dataset to evaluate the 

ability of transfer learning via a pre-trained VGG-16 CNN to maintain 

accuracy in detecting and classifying GNSS jamming signals in low SNR 
environments. The purpose of this work is to understand whether the 

technique presented in (Swinney and Woods 2019) will be valuable in low 

SNR environments.  

 
 

2 METHODOLOGY  

 

Dataset Generation 

Now the generation of the dataset will be discussed. First, 𝑠(𝑡) is represented 

as the signal at the GPS receiver shown in equation (1). 
 

 𝑠(𝑡)  =  𝑔(𝑡)  +  𝑗(𝑡)  +  𝑤(𝑡) (1) 

 

Whereby 𝑔(𝑡) is the GPS signal coming from the satellite, 𝑗(𝑡) is our 

jamming signal and 𝑤(𝑡) is the noise generated by AWGN across the wireless 

channel. 

 

GPS Signal  

First of all 𝑔(𝑡) is considered, the GPS signal coming from the satellite 

constellation. GPS is specifically be considered as the GNSS system. GPS is 

a US system consisting of 24 satellites across 6 orbits which operate over 12 

hr periods. GPS has two carrier frequencies L1 and L2 which broadcast 
Binary Phase-Shift Keying (BPSK). The L1 band is the focus which operates 

at 1575.42MHz across a bandwidth of 24MHz. However, it has been proven 

due to the design of the L1 signal that a bandwidth of 9.66MHz is enough for 
tracking and navigation (LabSat 2021). A bandwidth of 10MHz is used within 

our experiments.  

 
To try and create a realistic signal a real GPS signal is generated using GPS-

SDR-SIM (Ebinuma 2018). GPS-SDR-SIM is python based code which 
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generates GPS baseband data for the intention of being broadcast by an SDR. 
It allows you to define a static location, for our experiments the New York 

New York Piano Bar in Las Vegas, GPS co-ordinates 36° 10' 11.7876'' N 115° 

8' 23.3952'' W which corresponds to Latitude Longitude (36.169941, -

115.139832) are used. The GPS Satellite constellation is then specified using 
a daily GPS broadcast ephemeris file from the NASA Earth Data site (NASA 

2021).  For a date the 20 Dec 2014 is used for testing but ephemeris data is 

available up to 24hrs into the future, so applications can predict orbits. GPS-
SDR-SIM uses the data to generate the pseudo range and Doppler for 

simulated GPS satellites in view at that time which is then converted to I/Q 

baseband samples.  
 

Jamming Signals  

Next the jamming signals 𝑗(𝑡) are considered and the details of the production 

of the JamDetect dataset. GNURadio was used to produce the jamming 

signals. GNURadio is an open source framework which includes a free toolkit 
for the development of SDRs in a PC environment (Nutaq n.d.). The signals 

defined in (Ferreira et al. 2020) are used with GNURadio as a starting point 

and narrowband jamming is added to the jamming classes already defined.  
 

Chirp Jammer 

Chirp signals were generated by increasing frequency over time, also known 

as sweep jamming. Signals are constructed across a bandwidth of 10MHz 
with a fast sweep rate of 10KHz, the stop and start frequencies are calculated 

using equation (2). 

 
𝑓𝑚𝑖𝑛  =  𝑓𝑐  −  

𝐵𝑊

2
 =  1575.42 𝑥 106  −  

10 𝑥 106

2
 =  1570.42𝑀𝐻𝑧  

𝑓𝑚𝑎𝑥  =  𝑓𝑐  +  
𝐵𝑊

2
 =  1575.42 𝑥 106  +  

10 𝑥 106

2
 =  1580.42𝑀𝐻𝑧   

(2) 

 

The implementation used to produce the chirp signal in GNURadio is sourced 

from (Markowski 2021).  
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Figure 2. Chirp Jamming Signal Spectrogram (top) PSD (bottom). 

 

Fig.2 shows the Spectrogram and PSD of the signal. The PSD shows the 
signal at its highest point is approximately -65dB/Hz.   

 

Continuous Wave (CW) Jammer 

The CW jamming signal is produced in GNURadio using a 1KHz cosine 

signal source. Fig.3 shows the implementation of the jamming signal 

generation in GNURadio.  

 

 
Figure 3. CW Generation GNURadio. 

 

In Fig.4 it is observed that the CW jamming signal only occupies a small part 
of the GPS bandwidth.  
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Figure 4. CW Jamming Signal Spectrogram (top) PSD (bottom). 

 
This can be seen clearly in Fig.4 which also shows the highest peak of the 

signal at approximately -55db/Hz on the PSD.  

 
Barrage Jammer 

The barrage jamming signal is produced using a gaussian noise source in 

GNURadio.  Fig.5 shows the implementation in GNURadio. 

 

 
Figure 5. Barrage Jamming Generation GNURadio. 

 

As opposed to the CW jamming signal, the barrage jammer occupies all the 

bandwidth. It is not a discrete choice of jammer but potentially more effective 

against GPS due to the spread spectrum nature of a GPS signal.  
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Figure 6. Barrage Jamming Signal Spectrogram (top) PSD (bottom). 

 

The difference can be seen clearly when comparing Fig.4 for the CW jammer 
to Fig.6 for the barrage jamming. 

 

Narrowband Jammer 

The narrowband (NB) jammer is constructed in GNURadio by generating a 

QPSK signal which covers a bandwidth of 1.6MHz. Generation of the QPSK 

constellation was produced using the information in (Steve and Patel 2016).  

 

 
Figure 7. NB Jamming Signal Spectrogram (top) PSD (bottom). 

 

Fig.7 shows the signal represented in both Spectrogram and PSD form. It is 
observed that the signal peaking at approximately -55dB/Hz. 
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Pulse Jammer 

The pulse jamming signal was created using a vector source with a low duty 

cycle of 2% in GNURadio (Ferreira et al. 2020). The implementation of the 

jamming signal generation is seen in Fig.8 below.  

 

 
Figure 8. Pulse Jamming Generation GNURadio. 

 

The sequences of pulses occupy the full bandwidth. Fig.9 shows the 

Spectrogram and PSD for the pulse jamming signal. 

 

 
Figure 9. Pulse Jamming Signal Spectrogram (top) PSD (bottom). 

 

Protocol Aware Jammer 

The protocol aware jammer is constructed in GNURadio by generating a 
BPSK signal (GNU Radio 2021) to represent the structure of a GPS signal. 

Fig.10 shows the spectrogram and PSD representations of the protocol aware 

jamming signal. 
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Figure 10. Protocol Jamming Signal Spectrogram (top) PSD (bottom). 

 

The GPS signal and the jamming signals were combined to achieve a JSR of 

40dB.  

 
 

Additive Gaussian White Noise  

Lastly 𝑤(𝑡) modelled by Additive Gaussian White Noise (AWGN) to corrupt 

the signal and test classification accuracy for various levels of SNR is 
considered. AWGN was generated in Python 3 and added to the signal as 

shown in Fig.11. 

 
Figure 11. AWGN Channel Process. 

 

SNR is defined in (3) where 𝑃𝑟 is the power in the signal, 𝐵 the bandwidth 

and PSD of the noise 
𝑁0

2
 (Mathuranathan 2015). 

 

 
𝑆𝑁𝑅 =  

𝑃𝑟

𝑁0𝐵
 

(3) 

To add the noise the power in our signal is first calculated. This is seen in (4) 

where 𝑁 is the length of signal 𝑠. 
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𝑃 =  
1

𝑁
 ∑ |𝑠𝑖|²

𝑁−1

𝑖=0

 

(4) 

 

𝑃 is then used with our desired SNR to calculate the noise spectral density 𝑁0 

as seen in (5). 
 

𝑁0 =  
𝑃

𝑆𝑁𝑅
 

(5) 

Lastly the noise power is calculated which is required to generate Gaussian 

random noise in (6). 

 
𝜎2 =

𝑁0

2
 

(6) 

The calculations for generating AWGN and its implementation in python are 

referenced (Viswanathan 2019).  

 

 

Graphical Signal Representations  

Datasets were created for SNR 50dB, 30dB, 10dB, -10dB and -20dB to 

understand the effect on classification accuracy. A Power Spectral Density 

(PSD) was used to represent the signal in the frequency domain, displaying 
the power distribution over the frequency range. A spectrogram was used to 

consider the signal in the time domain. Both representations were plotted in 

Matplotlib Python 3 with an FFT size of 1024 and a Hanning windowing 
function. A raw constellation is plotted with real and imaginary parts of the 

signal on the x and y axis respectively and a histogram representation of the 

real part of the signal over 500 bins is also considered. Lastly a concatenated 

representation onto one image is created using python to include a dataset 
which contains all 4 graphical signal representations. Datasets were created 

of 1000 images of size 224x224 for use with 5-fold cross validation. 5-fold 

cross validation was chosen due to the work of (James, Gareth Witten, 
Daniela Hastie, Trevor Tibshirani 2017) who found that either k=5 or k=10 

both showed empirically errors rates which displayed neither high variance 

or high bias. K=5 is less computationally heavy than k=10 so it was the choice 

for the experiments.  
 

Next the graphical representations of s(t) at varying levels of SNR are 

visualised. First the CW jamming signal at a SNR of 50dB are observed in 
Fig.12 (left). The jamming signal is clearly present on the raw constellation 

graphical representation.  
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Figure 12. CW Jamming Signal SNR 50dB (left) SNR 10dB (right). 

 

Fig.12 (right) shows the same CW jamming signal but after dropping the SNR 

to 10dB. The constellation in red fills in and increases in size compared to 
Fig.12 (left). 

 
Figure 13. CW Jamming Signal SNR -10dB (left) SNR -20dB (right). 

In Fig.13 (left) the SNR ratio is dropped to -10dB and again the red 

constellation increases in size. In Fig.13 (right) the CW jamming signal with 

a SNR of -20dB is observed and the whole plot is covered in red due to the 
increase of noise.  

 
Figure 14. Chirp Jamming Signal SNR 30dB (left) SNR -10dB (right). 

 
Fig.14 (left) shows the chirp jamming signal represented in spectrogram form 

with a SNR of 30dB. The sweep nature of the signal in yellow is clearly 

observed. As the SNR decreases to -10dB we start to lose the signal in the 
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noise as seen in Fig.14 (right), however the pattern is still visible if it is 
considered closely. When the SNR is further decreased to -20dB the signal 

cannot be visually observed at all on the spectrogram.  

 

 

CNN Feature Extraction and Machine Learning Classifiers 

 

CNN Feature Extraction 

CNNs are often used for object detection but through a process called transfer 
learning, a pre-trained CNN can be used for other purposes such as detecting 

medical condition through brain scan or eye scan images (Thota and Umma 

Reddy 2020), (Kaur and Gandhi 2019). A VGG-16 is a type of CNN with 16 
layers, produced by Oxford Visual Geometry Group and commonly utilised 

in a pre-trained manner using a 14 million image database called ImageNet 

(Simonyan and Zisserman 2015). To utilise the VGG-16 in our research for 

feature extraction forward propagation is stopped at the last pooling layer to 

enable features to be saved. Table 1 shows the structure of the CNN used. 

 

Layer Type Shape 

Input Layer)          224x224x3    

Convolutional 2D Layer 112x112x128     

Convolutional 2D Layer 112x112x128     

Max Pooling 2D Layer  112x112x128     

Convolutional 2D Layer 56x56x256 

Convolutional 2D Layer 56x56x256 

Max Pooling 2D Layer  56x56x256 

Convolutional 2D Layer 28x28x512 

Convolutional 2D Layer 28x28x512 

Convolutional 2D Layer 28x28x512 

Max Pooling 2D Layer 28x28x512 

Convolutional 2D Layer 14x14x512 

Convolutional 2D Layer 14x14x512 

Convolutional 2D Layer 14x14x512 

Max Pooling 2D Layer 7x7x512 

Convolutional 2D Layer 7x7x512 

Convolutional 2D Layer 7x7x512 

Convolutional 2D Layer 7x7x512 

Max Pooling 2D Layer 7x7x512 

Table 1. VGG-16 Architecture.  
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The last layer of shape 7x7x512 produces a feature vector of 25,088 values 

when flattened. A batch size of 16 was used for the CNN.  

 

Machine Learning Classifier Logistic Regression 

The machine learning model LR has a number of fixed parameters which are 
set depending on the number of features given to the model as the input. The 

LR output produces a sigmoidal curve as it is categorical and can be seen in 

equation (7). 
 

 ℎ =  
𝑒𝑥

1 +  𝑒−𝑥
 (7) 

 

Input features are represented by 𝑥 and 𝑥 is initialised using a random value 

𝛳. Equation (8) shows the algorithm for when there are multiple features and 

as it is updated a relationship is formed between the features and the output.  

 ℎ =  𝛳₀ +  𝛳₁𝑋₁ +  𝛳₂𝑋₂ +..  (8) 

 

Multiple classes means that the sigmoid is generalised and this is known as 
the Softmax function which plots the input feature vector to a probability 

distribution which lies somewhere between 0 and 1. Equation (9) shows a 

softmax function for a feature vector 𝑧 with 𝑘 number of classes (Daniel and 

Martin 2019). 

 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧ᵢ) =  
𝑒𝑧ᵢ

∑ 𝑒𝑧j𝑘
𝑗=1

 (9) 

 

For this work Python3 library SKlearn is utilised to implement the LR with 

Limited-memory Broyden–Fletcher–Goldfarb–Shanno (LGBFS) as the 

solver and ridge Regression as the penalty for the loss function.  

 

 

Performance Evaluation 

Accuracy was the metric chosen to evaluate performance, but the confusion 

matrix is explained so that accuracy can be suitably defined below. A 

confusion matrix is seen in Fig. 15.  
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Figure 15. Confusion Matrix 
 

A True Positive (TP) indicates that the algorithm prediction was correct, a 

True Negative (TN) is when the prediction was incorrect, but the actual result 

was also incorrect. A False Positive (FP) shows a correct prediction but an 
incorrect actual result and a False Negative (FN) shows the prediction 

incorrect but the actual result correct. The definitions are used to produce 

equations for accuracy as show in equation 10 below.  

 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TP + TN

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (10) 

 

3 Results 

Table 2 shows the training/test 5-fold cross validation results. PSD produces 

the highest accuracy when SNR is reduced. It can be seen that as the SNR 

reduces from 50 downwards, but a decrease in accuracy is not seen until the 
SNR drops below 10dB. This allows us to make the assumption that 

evaluating the signal in the frequency domain is less susceptible to noise and 

able to still identify and classify the signal. When the time domain via the 

Spectrogram graphical representation is considered, it can be seen that it 
maintains accuracy levels up to -10dB SNR but significantly decreases below 

this, this is a significant drop when compared to the PSD graphical signal 

representation. The raw constellation is shown to be the most susceptible to 
noise and has the lowest performing accuracy scores. This indicates that the 

raw constellation data may perform better with some pre-processing which 

could include processes such as filtering. Concatenating the different signal 

representations seems to also inherit the low accuracy levels seen for the raw 
constellation and histogram representations at lower SNR levels which is 

logical.  
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SNR 
(dB) 

PSD 
Accuracy 

(%) 

Spectrogram 
Accuracy (%) 

Raw 
Accuracy 

(%) 

Hist 
Accuracy 

(%) 

Concat 
Accuracy 

(%) 

50 100 100 83.3 (+/- 

0.1) 

100 100 

30 100 100 66.7 (+/- 

0.1) 

99.9 (+/-

0.1) 

100 

10 100 100 76.8 (+/- 

1.5) 

94.3 (+/-

0.2) 

100 

-10 100 99.6 (+/- 0.3) 50.2 (+/- 

1.2) 

50.7 (+/-

0.7) 

100 

-20 82.7 (+/-

0.7) 

40.0 (+/-0.6) 25.8 (+/-

1.3) 

22.6 (+/-

0.8) 

74.0 (+/- 

1.5) 

Table 2. Results of 5 Fold Cross Validation - Accuracy (\%).  

 
Table 3 shows the validation results. The most significant finding from the 
validation results is with respect to the concatenated signal representations. 

Although effective at SNR levels of 10dB and above, the validation scores 

show that the concatenation of the signal representation presents overfitting 
at -10dB and below. This means that the model was learning the training data 

so well that the model did not generalise when it was given new samples in 

the validation set. A slight increase at the mid SNR level is also seen which 

indicates that the model performs better with some level of noise present. This 
indicates that the model can generalise better with a certain amount of noise 

present.  

 
The validation results also confirm the training and test results that the PSD 

produces the highest accuracy scores in low SNR environments and therefore 

is the least susceptible to noise.  
 

SNR 

(dB) 

PSD 

Accuracy 

(%) 

Spectrogram 

Accuracy (%) 

Raw 

Accuracy 

(%) 

Hist 

Accuracy 

(%) 

Concat 

Accuracy 

(%) 

50 100 100 83.4 94.1 96.1 

30 100 100 66.8 100 84.1 

10 100 100 78.5 94.2 100 

-10 100 99.7 51.1 50.1 55.8 

-20 81.7 40.1 27.1 23.9 19.4 

Table 3. Results of 5 Fold Cross Validation - Accuracy (\%).  
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4 CONCLUSION 

 
Overall, our results have shown that the PSD graphical signal representation 

is the least susceptible to noise and produces the highest accuracy in low SNR 

environments. While our previous work showed that concatenating various 

graphical signal representations together as the input for the CNN, this 
extension of that work has shown this to be effective only in environments 

with SNR levels higher than -10dB. This is significant for congested 

environments where it is vital to know GPS jamming is being attempted. In 
low SNR environments PSD should be utilised for GPS jamming 

classification. 

 

 

5 FURTHER RESEARCH DIRECTIONS 

 

Further work could include exploring deeper architectures and types of neural 

networks for feature extraction. Experimentations with real GPS jamming 
signals which includes distance of detection and classification should also be 

considered for future exploration. Overall, this work has shown that PSD 

graphical signal representation provides the highest accuracy for GPS 
jamming classification in low SNR environments with CNN feature 

extraction and machine learning classifier logistic regression. 
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